Pruning Product Unit Neural Networks

A Ismailf and AP Engelbrechti

t Department of Computer Science, University of Western Cape, South Africa,
aismail@Quwc.ac.za
1 Department of Computer Science, University of Pretoria, South Africa,

engel@driesie.cs.up.ac.za

Abstract - Selection of the optimal architecture
of a neural network is crucial to ensure good gen-
eralization by reducing the occurrence of overfitting.
While much work has been done to develop prun-
ing algorithms for networks that employ summation
units, not much has been done on pruning of prod-
uct unit neural networks. This paper develops and
tests a pruning algorithm for product unit networks,
and illustrates its performance on several function ap-
proximation tasks.

I. Introduction

Multilayer neural networks have shown to be success-
ful in many applications, including environments such as
engineering, medicine, econometrics, and computer sci-
ence, to name a few. Application of a neural network
(NN) to solve a real-world problem is not a straight for-
ward process, but requires careful planning of the net-
work architecture and training process. With reference
to the training process, careful consideration must be
given, amongst others, to the type of optimization al-
gorithm used to train the network, the mode of training
(batch or on-line), training set manipulation techniques,
active learning strategies, and optimal training parame-
ters. Planning of the NN architecture includes selection
of the number of layers and the number of neurons in
each layer.

Architecture selection is important to ensure good gen-
eralization performance. Undersized networks fail to ap-
proximate the underlying function that relates inputs to
desired outputs, thus causing bad generalization. Over-
sized networks, on the other hand, have too many de-
grees of freedom (number of weights), which allows the
network to exactly approximate the mapping as reflected
in the training set. This causes the network to overfit the
training data and to memorize noise components, thereby
reducing the generalization ability.

Several techniques have been developed to deal with
the architecture selection problem. These include

o regularization, where a penalty is added to the ob-
jective function to penalize architectural complexity

(1], [2];

o network growing, where the size of the network grows
incrementally [3], [4]; and

e pruning, where an initial oversized network is re-
duced to an optimal size through deletion of weights,
input and hidden units [5].

These architecture selection techniques have been de-
veloped specifically for networks with summation units
(SU). While summation unit neural networks (SUNN)
have been very successful, networks that make use of
product units (PU) have the added advantage of in-
creased information capacity [6]. That is, smaller prod-
uct unit neural network (PUNN) architectures can be
used than for SUNNs. Several studies have been done
to study the training and performance of PUNNSs [6]-[9],
while architecture selection of PUNNs has not received
much attention.

This paper presents a pruning algorithm to determine
optimal PUNN architectures. The algorithm is based on
the variance nullity algorithm developed by Engelbrecht
[10], where the significance of a unit is measured as the
sensitivity of the network output to perturbations in that
unit.

The rest of the paper is organized as follows: Sec-
tion II overviews PUNNs. The variance nullity pruning
approach is summarized in section III, and the PUNN
pruning algorithm is presented. Experimental results are
provided in section IV.

II. Product Unit Neural Networks

Standard neural networks (NN) use summation units
to compute the net input signal to hidden and output
units. For SUs, the net input signal is calculated as the
weighted sum of the inputs connected to that unit. Re-
search has shown that these summation unit neural net-
works (SUNNSs) can approximate any continuous func-
tion to an arbitrary degree of accuracy, provided that the
hidden layers contain a sufficient number of hidden units
[11], [12]. However, these networks require a large num-
ber of summation units (SUs) when approximating com-
plex functions that involve higher order combinations of
its inputs [8]. When approximating polynomials, higher-
order combinations of inputs, such as z3y7, are often re-



quired. Networks that utilize higher-order combinations
of its inputs will greatly reduce the number of processing
units required to represent these complex functions [7].

A product unit neural network is such a higher-order
network, where the net input is now a product of terms;
each term consisting of an input raised to a weight. Ad-
vantages of PUNNs are increased information capacity
and the ability to form higher-order combinations of in-
puts. Durbin and Rumelhart determined empirically
that the information capacity of product units PUs (as
measured by their capacity for learning random boolean
patterns) is approximately &N, compared to 2N of a SU
network for a single threshold logic function, where N
denotes the number of inputs to the network [6]. Durbin
and Rumelhart suggested two types of networks incor-
porating PUs [6]. In the one network type each SU is
directly connected to the input units, and also connected
to a group of dedicated PUs. The other network consists
of alternating layers of product and summation units,
terminating the network with a SU. This paper concen-
trates on three-layer PUNNs where only the hidden layer
consists of PUs, while the output layer has SUs. Both
layers use linear activation functions.

Under these assumptions, the net input signal to hid-
den unit y; for pattern p is calculated as [9]
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with I the total number of input units, z;, the input
value of the i-th input unit for pattern p, and vj; the
weight between input unit z; and hidden unit y;. Note
that no bias is included for hidden units, but a distortion
unit is included as part of the product. Unit zry1, with a
constant input of -1, refers to the distortion unit, and has
the objective to dynamically shape the activation func-
tion to more accurately approximate the target function
(vefer to [13] for a presentation on the distortion unit).

The net input signal to output unit oy is
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where J is the total number of hidden units, J + 1 refer
to a bias unit with a constant input of -1 (the weight
leading from the bias unit to the output unit serves as
the bias), wg; is the weight between hidden unit y; and
output unit oy, and y;,,, is the activation value of hidden
unit y; for pattern p.

Training of PUNNs present problems due to the in-
creased number of local minima in the search space and
the exponential terms in the weight update equations.
Local optimization algorithms such as gradient descent
therefor fails to train PUNNs in general [9]. Success-
ful training of these networks requires the use of global
optimization algorithms such as genetic algorithms and
particle swarm optimization [9]. For this paper, particle
swarm optimization [14] is used to train PUNNs.

III. Variance Nullity Pruning Algorithm

The variance nullity pruning algorithm of Engelbrecht
is based on NN output sensitivity analysis, where the rel-
evance of parameters (input and hidden units) is based
on parameter sensitivity information [10]. A variance
nullity is computed for each parameter. The objective of
the variance nullity measure is to test whether the vari-
ance in parameter sensitivity for the different patterns is
significantly different from zero. If the latter is not the
case, it indicates that the corresponding parameter has
little or no effect on the output of the NN over the entire
set of patterns presented to the network. A hypothesis
testing step uses these variance nullity measures to sta-
tistically test if a parameter should be pruned, using the
x? distribution.

The variance nullity measure for a single parameter 6;
is a function of the sensitivity, S(OPH)JM of output o to
changes in parameter 6; for a single pattern p, where
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In the case of PUNNS, the sensitivity of output unit o to
changes in hidden unit y; is, assuming linear activations,
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The Sgg)/ r; Values are then used by the pruning algorithm
to remove irrelevant hidden units (refer to [10] for more
detail on the algorithm). For pruning of input units,



the sensitivity with respect to changes in input unit z; is
expressed as
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The statistical nullity in parameter sensitivity, Yy,, of a
parameter 6; over patterns p = 1, ..., P is then defined as
follows [10]:
(P —1)o2.
Ty =—75— (1)
9%
where 07 is the variance of the sensitivity of the network
to perturbations in parameter 6;, 03 is a value close to
zero and P the number of patterns in the pruning set.
The variance in parameter sensitivity, agi, is computed
as
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and Ny, is the average parameter sensitivity over all pat-
terns p=1,..., P, i.e.
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The null hypothesis is then defined as

N
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This hypothesis can however not be used, since equation
(1) does not allow o2 = 0, and therefor it cannot be
hypothesized that the variance in parameter sensitivity
over all patterns is exactly zero. To alleviate this prob-
lem a small value close to zero is chosen for 03, and the
alternative hypothesis,

Hy agl. <op
is tested. The variance nullity measure defined in equa-
tion (1) has a x?(P — 1) distribution in the case of P

patterns. The critical value, Y., can therefor be obtained
from x? distribution tables, i.e.
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where v = P — 1 is the number of degrees of freedom
and « is the level of significance. Using the critical value
defined above, if Ty, < Y., the alternative hypothesis H;
is accepted and parameter 6; is pruned.

IV. Experimental Results

This section illustrates the performance of the PUNN
pruning algorithm. For this purpose, a particle swarm
optimization (PSO) algorithm has been used to learn
each of the following functions (refer to [9] for the im-
plementation of the PSO):

e The quadratic function f(z) = 2%, with z ~

U(—1,1). The training, test and validation sets con-
sisted of 50 distinct randomly selected patterns.

e The cubic function f(z) = 2* — 0.04z, with 2z ~
U(—1,1). The training, test and validation sets con-
sisted of 50 distinct randomly selected patterns.

o The henon time series z; = 140.32;_2—1.427_;, with
21,22 ~ U(—1,1). The training, test and validation
sets consisted of 200 distinct randomly selected pat-
terns.

o The surface f(z,y) = y’2® — 0.52%, with 2,y ~
U(—1,1). The training, test and validation sets con-
sisted of 300 distinct randomly selected patterns.

e The paraboloid f(z,y) = 2® + y?, with z,y ~
U(-2,2). The training, test and validation sets con-
sisted of 300 distinct randomly selected patterns.

e The function f(x,y) = sin(x?) +sin(y?), with z,y ~
U(-2,2). The training, test and validation sets con-
sisted of 300 distinct randomly selected patterns.

o The camel function f(z,y) = 4—2.12% + ””3—3332 +zy+
(4y% — 4)y?, with z ~ U(0,10) and y ~ U(0, 10).
The training, test and validation sets consisted of
500 distinct randomly selected patterns.

o The function f(z,y) = sin(z) sin(y)/zy, with 2,y ~
U(0,10). The training, test and validation sets con-
sisted of 500 distinct randomly selected patterns.

This section reports results as averages over 30 simula-
tions together with a 95% confidence interval as obtained
from the t-distribution. For all the results, networks were
pruned as soon as overfitting has been detected. That is,
training stopped when

Ev >EV + ogy

where &y, &y and og, are respectively the current mean
squared error (MSE) on the validation set, the average
MSE since training started, and the standard deviation
in the validation MSE.

Table T summarizes the results obtained for pruning
of product hidden units for each of the functions listed
above. The table provides the number of hidden units
used for the initial oversized networks and the average
number of hidden units after applying the variance anal-
ysis and brute force pruning. The MSEs for each prob-
lem are given for the training and test sets. The first



thing to notice from table I is the significant improve-
ments in training accuracy and generalization for all the
functions, except for the Camel function. In this case,
the training error is a little worse for the pruned net-
work, but generalization is on average better. For most
of the problems, the variance analysis pruning algorithm
did not manage to produce the same numbers of hidden
units as obtained by the brute force approach. However,
note that the training errors and generalization perfor-
mances of the pruned networks for the variance analysis
approach are much better than those obtained from the
brute force pruning - an indication that the brute force
approach overpruned the networks.

Table IT compares the pruned PUNNs with pruned
SUNNs, where the SUNNs were pruned using the vari-
ance analysis algorithm in [10]. Note that for all prob-
lems the pruned PUNN architectures are smaller than
the pruned SUNN arechitectures, supporting the fact
that PUNNs have a higher information capacity than
SUNNSs. It is only for the Henon map, Camel function
and f(x,y) = 22 +y? that the pruned SUNNs have better
accuracy than the pruned PUNNs.

Table III illustrates the performance of the pruning al-
gorithm under noisy conditions. For the functions listed
in table III, 10% noise was added to the training set. For
all the functions, the average number of pruned hidden
units does not differ significantly from those obtained
without noise (also refer to table I). For these functions,
the performance of the variance analysis pruning algo-
rithm does not degrade under these noisy conditions.

To illustrate the pruning of input units, irrelevant in-
put parameters were introduced for functions f(z) = 22,
f(x) = 2° — 0.042 and 372> — 25. These irrelevant pa-
rameters have random values. The number of hidden
units as determined from the pruning algorithm has been
used. Table IV summarizes the results for input prun-
ing. In all three cases the network succeeded in removing
the irrelevant input units. Both functions f(z) = 2% and
f(z) = 23 — 0.04z have only one relevant input unit.
Three input units must therefore be pruned, which is
the case. For the last function, the pruning algorithm
succeeded to remove the two irrelevant parameters to re-
main with the two relevant inputs. Note the improve-
ment in both the training accuracy and generalization
performance for the pruned networks.

V. Conclusions

This paper presented a pruning algorithm for the prun-
ing of input and hidden units of product unit neural net-
works, where product units are used within the hidden
layer of the network. The pruning algorithm is based
on the variance nullity pruning approach for summation

units [10], where the significance of a unit is determined
based on the sensitivity of the network output to pertur-
bations of that unit.

Experimental results presented in this paper showed
that the PUNN variance nullity pruning algorithm suc-
cessfully removes irrelevant input and hidden units. Fur-
ther extensions of the algorithm can be done to also prune
network weights.
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TABLE I
PrRuNING OF HIDDEN UNITS

Oversized Variance Analysis Brute Force
network Pruning Pruning
No of MSE on MSE on No of MSE on MSE on No of MSE on MSE on
Function hidden Training Test hidden Training Test hidden Training Test
units set set units set set units set set
f(z) = 2> 8 0.01450 0.04149 1.6 0.00054 0.00064 1 0.00034 0.00033
+0.00340 | 40.03512 +0.00028 | 40.00036 +0.00011 +0.00011
f(z) = 2® —0.04z 8 0.00449 0.0542 1.5 0.00015 0.00018 1 0.000018 0.000016
+0.00099 | 40.00140 +0.00018 | 40.00027 +0.000004 | 40.000004
Henon 10 0.00391 0.0382 6.8 0.00014 0.00056 4 0.00317 0.00788
+0.00415 | 40.04519 +0.00007 | 40.00020 +0.00175 +0.00446
flz,y) = 10 0.00166 0.00232 3.8 0.00028 0.00132 2 0.00091 0.00121
yz® —0.52° +0.00055 | 40.00062 +0.00014 | 40.00071 +0.00047 +0.00062
f(z,y) =2 +9° 10 0.03269 0.03501 3.3 0.01024 0.01122 2 0.00883 0.00831
+0.00744 | £0.00653 +0.00299 | +0.00281 +0.002895 | 40.00271
f(z,y) = 10 0.00396 0.01431 5.1 0.00047 0.00076 4 0.00211 0.00411
sin(z?) + sin(y?) +0.00127 | £0.01039 +0.00022 | +0.00036 +0.00095 +0.00319
Camel 15 0.03058 0.04252 5.9 0.03273 0.03880 6 0.03169 0.03987
+0.00208 | +0.00498 +0.00457 | £0.00512 +0.00267 +0.00329
flz,y) = 12 0.00052 0.00506 71 0.00009 0.00068 7 0.00056 0.00079
sin(z) - sin(y) - /T -y +0.00027 | +0.00325 +0.00004 | +0.00077 +0.00040 +0.00056
TABLE II
CoMPARISON OF OPTIMAL SUNN AND PUNN using PSO
SUNN PUNN
Best MSE on MSE on Best MSE on MSE on
Function configuration Training Test configuration Training Test
set set, set set,
f(z) = a? 1:2:1 0.001945 0.001873 1:1:1 0.000344 0.000334
+0.00172 | +0.001355 +0.000112 | 40.000112
f(z) = 2% — 0.04z 1:3:1 0.000095 0.000165 1:1:1 0.000018 0.000016
+0.000025 | 40.000049 +0.000004 | =40.000004
Henon T:5:1 0.00042 0.00040 T:4:1 0.003173 0.007881
+0.000049 | 40.000045 +0.001754 | 40.004455
f(z,y) =y 2 — 0.52° 1:6:1 0.001086 0.003604 1:2:1 0.000919 0.001213
+0.000089 | +0.000953 +0.000476 | +0.000625
f(z,y) =z + 4y 1:4:1 0.001860 0.002164 1:2:1 0.008836 0.008312
+0.000776 | +0.000753 +0.002895 | +0.002709
f(z,y) = sin(z?) + sin(y?) 1:6:1 0.008542 0.011924 1:4:1 0.002119 0.004106
+0.000572 | 40.000804 +0.000956 | 40.003188
camel 1:8:1 0.001228 0.002044 T:6:1 0.031696 0.03987
+0.000217 | 40.000344 +0.002673 | +0.003291
f(z,y) = sin(z) - sin(y) - /= - ¥ 1T:9:1 0.010991 0.012457 T:7:1 0.000568 0.000795
+0.000368 | +0.000309 +0.000400 | +0.000569
TABLE III
PRUNING OF HIDDEN UNITS WITH NOISE ADDED TO DATA
Oversized Pruned
network network
No of | MSE on MSE on No of | MSE on MSE on MSE on
Function hidden | Training Test hidden | Training Test Validation
units set, set, units set, set, set,
f(a:) =z 8 0.01716 0.01921 1.7 0.00091 0.00118 0.00264
+0.00360 | +0.00493 +0.00045 | £0.00070 +0.00340
f(x) =23 — 0.04z 8 0.00677 0.01039 1.6 0.00073 0.00075 0.00087
+0.00110 | £0.00218 +0.00026 | £0.00035 0.00016
f(a:,y) = 10 0.00149 0.00311 3.9 0.00026 0.00044 0.00089
y7x3 — 0.528 +0.00033 | £0.00082 +0.00016 | £0.00017 +0.00041




TABLE IV
PruUNING OF INPUT UNITS

Oversized network

Pruned Network

Function No of input MSE on MSE on || No of input MSE on MSE on

units Training set | Test set units Training set | Test set

f(z) = 22 4 0.01970 0.02223 1 0.00186 0.00171
+0.00327 +0.00477 +0.00278 +0.00257

f(z) = 2% — 0.04z 4 0.00199 0.00256 1 0.00003 0.00004
+0.00142 +0.00185 +0.00002 +0.00003

f(z,y) =y x> — 0.52° 4 0.00680 0.00950 2 0.00163 0.00269
+0.00084 +0.00108 +0.00097 +0.00172




